If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-35-25=0
We add all the numbers together, and all the variables
30x^2-60=0
a = 30; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·30·(-60)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*30}=\frac{0-60\sqrt{2}}{60} =-\frac{60\sqrt{2}}{60} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*30}=\frac{0+60\sqrt{2}}{60} =\frac{60\sqrt{2}}{60} =\sqrt{2} $
| 5(x-5)=2x-1 | | 2(3x+1)=4x+1-2x | | 2/7=5/x-1 | | 5x=3x-8=4x+2 | | 3t^2-t+1=0 | | -8=25(k−2) | | 0=3/2x-9 | | (-12)-(x-1)(-4)=18 | | -x-8=-5-32 | | 8x-5=8(x+-8) | | 6+2x=112 | | 27+x=-14 | | 73=11t-4.9t^2 | | (-12)-(x-1)-4=18 | | 3(2-5x)+5(3x+1)=-15 | | 5x-36=x^2 | | 3+-2a=4a-1 | | -2(2z+1)=26 | | |m+9|+2=23 | | 56x/100=439.6 | | 7x-x-x-1=19 | | (3x-4)^2=8 | | 1/8x-2=-5 | | 100x=(-100) | | 1,260=180(n-2) | | 2(2t+4)=3(24-8t) | | 4^3=2^x | | A*x=7 | | 3x2−9x−12=0 | | x-5+5=2x-7 | | 4(z−5)+2=4z−18 | | 4^x+1=4^9 |